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Integral equations (IE) to which one can reduce certain static and dynamic problems concerned with 

bending of thin plates with inclusions are considered. A method of solving these equations is proposed, 

which is based on a speciai approximation of the symbol of the kernel of the IE. The exact solution of 

the IE with an approximate kernel is constructed in the class of functions with integrable singularities 

at the ends of the inte~ation interval. 

OTHER methods of solving the integral equations (IE) of the mixed static problems of the 
theory of thin plate bending were considered in [l, 21 and elsewhere. 

1. THE INTEGRAL EQUATION 

We consider the following IE of the first kind, to which one can reduce some problems of 
the theory of the bending of the plates 

(1.1) 

The kernel of the IE is given by the formula 

k(t) = / K(u)e -fufdu, t = (5 - x)/X, X=h /a (1.2) 

The function K(u) in (1.2) is meromorphic, even and real-valued on the real axis, and has the 
following asymptotic properties 

K(u) =ur3 fO(U-5),U+=; K(U) =A +O(u2), u-4 (1.3) 

In view of (1.3) the kernel is smooth and has the asymptotic forms 

k(t) =%t21nltl + 0(t2) 
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as t -_) 0. 
The integration contour r is chosen according to the limiting absorption principle [3, 41, 

since in dynamic problems some of the zeros and poles of K(u) at a fixed frequency lie on the 
real axis. By choosing r one can construct the unique solution of a dynamic problem [4]. 

Since K(u) is a meromorphic function in the complex plane &+a +ir), it can be expressed 
in the form of an infinite product 

- 1 +u*cY;* 
K(u) =A n 

n=ll +u*/1,* ’ 
A = lim K (24) 

U-r0 
(1.4) 

where tiia, and S/3” are the zeros and poles of K(U) in the complex plane. 

2. APPROXIMATION OF THE SYMBOL OFTHE KERNEL OF THE 
INTEGRAL EQUATION 

For the solution of IE (1.1) the symbol of the kernel, i.e. the function K(U), can be approx- 
imated by an expression of the special form 

K(u) = 
th(Au) n” u* tq; 

u(u’tlJ8) n=1u2 tp; (2-l) 

which has the same asymptotic properties as K(u) as u + 0 and u -_) =. The zeros q, and poles 
p, of (2.1), except for those lying on the real axis (on being computed with a given accuracy, 
they are substituted directly into (2.1)), can be chosen from the best approximation of K(u) on 
the real axis and in a small neighbourhood of the real axis. 

To solve Eq. (l.l), we make the substitution U= AU’ and, after omitting the primes, obtain 
the equation 

;- J/Wk(F - x)dl =hf(x), 1x1 G 1 (2.2) 
-1 

in which, taking the approximation into account, the kernel can be written in the form 

k(t) =_f 
th(a4J.u) n” 2 t 62, 

r u(3 tr’,) n=l u* t 7; 
e -j”du, 16, =qn, h7, =p,, (2.3) 

In what follows the notation 

K(u) ~th(AA;r)!(uE(u*)),5(U*) =t2t~)/L(& (2.4) 

will be used for convenience along with (2.3). Here Li(u2) are polynomials of degree 2N and 
2N + 2, respectively, and *is,, and tiiy, are the zeros of these polynomials, which coincide with 
the zeros and poles of the integrand in (2.3). 

3. SOLUTION OF THE IE WITH KERNEL (2.3) 

To solve IE (2.3) we write the formulae 
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for the generalized Fourier integral transformation. 

-‘B”dp = 

{ 

27rJl(x), I.4 <I 

0, 1x1 > 1 
(3.1) 

The solution of the original IE (2.2) with kernel (2.3) is sought for the right-hand side of the 
special form f(x) = e-“, for which it is required that f(x) can be expanded into the Fourier 
series (genera~y speaking, E is a complex number). 

To begin with, we shall find [5] the solution of IE (2.2) for the special right-hand side f+(x) = 
cha. In this case, (2.2) takes the form 

.t $Jt)k(t -x)dt =Znchex, Ixl Ql 
-1 

(3.2) 

where v+(x) is the even part of w(x). 
The solutions of (3.2) are sought in the class of functions with integrable singularities at the 

end-points of the integration interval [l, 21. Then it becomes necessary to regularize the 
integral in (3.2). It proves convenient to do this at a later stage of solving the equation. 
~~~~ (3.2) can now be represented as an ordinary differential equation (the notation (2.4) 

Li (Z)Q+(x) =27r.L~ (Z)chex, I= -d2/dx2, 1x1 Ql 

where, in accordance with (2.4), h(Z) and G(r) are differential operators of order 2N and 
2N+2 inx. 

On inverting Eq. (3.3), we obtain the following new IE for determining v+(x) 

Q+(x) = XfQJ), x (5 x) = 27@(-e2) f 2n XC&chbG, 1x1 ~1 (3.5) 

Here C, is a system of constants, that remain unknown for the time being, and the summation 
is always from II = 1 to n = N. 

At this stage of solving the IE we regularize the outer integral 
functions 

in (3.5) using the class of 

l&*(x) =w(x)(l -x2y3h, w(x) EHJ-l,l], 

in which we seek the solution of the original IE [l, 21. 

7<% (3.6) 

The feasibility of regularizing the integral in (3.9, rather than in (3.2), can be explained by 
the properties of the canonical reg~ariza~on 161. In view of the fact that v+(x) is an even func- 
tion, the regular&&ion in (3.5) can be carried out as follows: from w+(x) we subtract and then 
add to it the expression 

g(x) =B+ (ch6 - ch8x) -‘h, B = r/(/IX) 

where B+ is an ~known constant. Then we tra~form (3.5) to the form 

q:(x) =4fi~‘B,&~ (cb~)l(BW + x(E,x), 1x1 Ql (3.7) 
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where n+ * (x) is an integral similar to (3.4) with v+(x) replaced by w+* = w+(5) + t&5). 
It is seen that 

IL,(x) =w(x) (1 -x+ o(x) EH,[-l,l], y>o 

i.e. the solution of IE (3.7) must belong to the class of functions with integrable singularities at 
the end-points of the integration interval. 

Now, using the well-known results [5] for the Fourier transformation of the function v+(x) 

we find that 

‘k+ (P) = 2J%B+ x2 
N(--?4 + iJY/e ) 4) 

&he Q._, 
+ @+@) 

Q+,(P) =GP_, + ip/e ( the) - ~T*E ‘sheH(-% + ifile, 4 t E/e ) - 

- nshe Z C,Jis(-M + ipI , 4 + 6,/e ) 

Q_,G, = ng (-E2) she H(-M t E/e , - ?4.) - she Zfqv(-!4 t 6,/e ) 4) 

H(U;U) =e-2 (pg: -P&) ((ut 34)’ t (U + 54)*)-l 

N(u,u) =P,Q:, -Q, P:,, Pf=Pt(cht?), Qf=Q:(che) 

(Pt and at are the associated spherical functions of the first and second kind). 
The solution v+(x) is given by the formula 

2nQ_% Q+(X) =Ge WQ_S4 +r2(l,x)Q:1/2)/r3(l,x) +2nq+(x) 
c, =2JT?TB+/(eshe) 

~P+(~)=~C-E*)F(-~,-M+E/~ ,x) tzc~(-9+wf_i,/e ,x) 

(3.8) 

(3.9) 

F(u,.u,x) = - 
e she ~(2.4, u ) I P, (che7) She7 

-ez(vt n)*J dr 
r O,x)Q, x r (7,x) 

r (KU) = (2(cheu-ch6u))’ 

The constants C,, C,, . . . , C,, in (3.5) can be determined by substituting (3.8) into the dual 
IE, which is equivalent to (3.7). On taking the quadratures, the task of solving IE (3.2) can be 
reduced to the solution of the linear algebraic system 

N 

~xlc=fm + hnkXk. m =O, l,..., N (3.10) 
k=O k=O 

xo = -CoQ!% 3 xn=C,& +6n,e QIK. 

amo= -Q_++Q!, +Ymp i(Q',Q_, +7m/e ) 
a mn -Q_$ (44 + &,ije, -‘A t ym /e) /QLlh 

f,,?nc*E(-E*)E(-% + El0 ,-% +-rmP, 4)/Q_, +rm,e 

R(u,u) = [(ut %)*P,Q: - (u t %)*P:Q, ]/A&u) 

A(u,u) =(u-u)(utu -l)P,Q, 

E(u,u,w) =Q,T(u,v) -Q, T(u,w)> T(W) =e*N(U,u) [(ut 4LL)* - (u t n)*]-1 
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As in the even case considered above, to construct a solution of IE (1.1) with an odd right- 
hand side of the special form f_(x) = sha, one can change from (1.1) to an equation of the type 
(3.2) by making the same substitution, which in the case in hand leads to the equation 

J$_(E)k([ -x)d5=2nshex, 1x1 < 1 
-1 

(3.11) 

where k(t) is given by (2.3) and where v_(x) is the odd part of w(x). 
The solution v_(x) of (3.11) is sought in the class (3.6) of functions with non-integrable 

singularities at the end-points of the integration interval. To this end one can use essentially 
the same scheme for solving (3.11) as in the even case considered above. As a result, (3.11) can 
be reduced to solving an equation that differs from (3.5) by the fact that VI, is replaced by VI_, 
chex is replaced by sha and ch&x by sh&x. The constants C, will then be replaced by new 
constants 0.. Furthermore, the integral must also be regularized by subtracting from I,v_(x) 
and then adding to it the expression B_sh&(ch0-ch&)-3’2, in which B_ is an unknown 
constant. 

The solution v_(x) has the form 

$_(x) = -DoB2shOx/[81rr3 (1,x)] +9_(x) 

9_(x) ={(-e’)shex[S(-% + e/e ,x) -xD,$(-% +6,/o, X)] 

(3.12) 

dd 

Hence we have obtained the solutions of the original IE for the special even and odd right- 
hand sides (3.9) and (3.12). The solution of the IE with right-hand side f(x)=e-I can be 
constructed from the formula I&X)= v,(x)-I,u_(x). In doing so one must not forget the 
connection between pn, qn and S,,, y” in (2.3) in the final construction of the solution. 

In what follows, when considering specific examples of problems which can be reduced to IE 
(l.l), we shall need formulae for the solution of this equation in the special case when the 
right-hand side is equal to one. In this case, to obtain the solution it suffices to pass to the limit 
as E + 0 in formulae (3.9) and (3.10) for the even case. As a result, we shall obtain a simpler 
solution for f(x) = 1, in which the first term in the expression for q+(x) is equal to zero, and 
f,=l. 

4. PROBLEMS REDUCIBLE TO IE (1.1) AND SOME SUPPLEMENTARY FORMULAE 

As a first example we consider the problem of oscillations of a thin rectilinear rigid inclusion of length 

2a in a pre-stressed Kirchhoff-Love plate [7]. The inclusion oscillates due to a force that varies according 
to the harmonic law Pemro’. The plate can be represented as a strip of width Zr. The inclusion is placed in 
the middle of the plate parallel to its side edges, which are rigidly fixed. 

With the aid of the Fourier integral transformation this problem can be reduced to the solution of IE 
(1.1) with kernel k(t) whose symbol has the form 

K(u) = 2 
u1u2 (1 -cho,chu,) +%(O: +u:)xhu,shu, 

iup, (u,chuIshuz - u,shu,chu, 

01 ,f = (uZ +4:,r i 7) ? 7 = [2(q, -4, w + q; + K4 ] ?4 

2 =p&h2D-‘. qi=?4N~~haD-L, i =l, 2 

(4.1) 

Here q, are the magnitudes of the generalized prestresses at the middle surface of the plate, k is the 

generalized frequency of oscillations, and N, are the forces on the middle surface of the plate. Since the 
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inclusion is rectilinear, f(r)= 1 in IE (1.1). 
As another example, we consider a problem whose formulation differs from that of the former one 

only by the fact that side edges of the plate are supported by hinges. In the same way as above, the 
problem can be reduced to the solution of IE (1.1) with the symbol of the kernel 

R(U) =T-’ (o;'tho, -o;‘tho,) (4.2) 

The simplified formulae mentioned at the end of Sec. 3, which determine the reactive shear force 

arising on the rigid inclusion in the plate, have been used to solve the resulting equations. 
The effect of the prestress q2 (ql = 0), the oscillation frequency K, and the conditions for fixing the side 

edges of the plate on the amplitude of the force P acting on the inclusion (corresponding to the unit 
displacement of the rigid inclusion) has been studied with the aid of the above-mentioned formulae. 

The functions K(U) ((5.1). (5.2)) for the problems considered have all the required properties (Sets 1 
and 2), except for being meromorphic, since they have branching points on the imaginary axis in the 
complex plane u = o+iz. This is not an obstacle as far as the method of solving the IE proposed in this 
paper is concerned, because the functions K(U) can be approximated by expressions of the form (2.1) on 

the real axis. 
In the case under consideration, the amplitude of the force acting on the inclusion per unit length of the 

inclusion has the form 

p= _f rL+(E)dE =%C,,N(-%, 41 IQ_, +E(-E2)Y(-%+E/e .-%) +z:cnyi_y2+ 
-1 

(4.3) 

+ sde 4) 

Y(U,V) =%a[eP&+%) +sheN(u,~~) (u - I,-'l/Q_, 

In the case of a rectilinear inclusion f(x) = 1 under consideration, the formula can be simplified, since 
one must set E = 0 in (4.3). 

The dependence of the reduced force P, that acts on the inclusion and pushes it down to unit depth, on 
the generalized frequency K and the generalized preliminary compression-extension q2 is presented in 
Fig. 1 by solid lines for the fit problem, and by dashed lines for the second problem. The geometric 

P 
100 

u 
I 2 x 

FIG. 1. 
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parameter is h = h/a = 1. It clearly follows from the graphs that the force needed to push the inclusion 
down to unit depth must be greater for the first problem than for the second. Near the first resonance 
frequency the plate becomes more susceptible to bending and the force decreases (tends to zero) in both 
problems. The graphs also indicate that in the case of the first problem the system is more rigid and has 
higher characteristic frequencies than in the case of the second problem. It can also be seen that by 
changing the preliminary compression-extension, one can change the characteristic oscillation frequen- 
cies of the plate. The prestresses have a significant effect on the magnitude of the force, which decreases 
as the preliminary compression increases, and increases as the preliminary extension increases. 

As has been mentioned above, it is important to study the phase velocities of the displacements of the 
plate both for practical reasons and in order to construct the correct solution of IE [4]. Using a simple 
example of the second problem in which the function K(u) is defined by (4.2), we will demonstrate the 
dependence of the spectrum of poles on the parameters. In the plane u2 = y, 8 = x the poles of K(u) 
from (4.2) are given by the system of h~erbolae 

X’JQX- (y+'k)=/aT=r 

ck=q; - (ql -ql) .tn*c%+k)*,Q;(=(q2 -4,)cq:“c’k) -qz, k=O,1,2 9.1. 
(4.4) 

In other, more complicated cases, they have been obtained numerically. 

The numerical realization of the method proposed for solving integral equations of the type 
(1.1) is highly efficient over practically the entire range of variation of 1 E (0, -)_ An impo~ant 
advantage of the method is the absence of singular quadratures in the resulting solution, that 
often arise when solving the problems from the class under consideration. The error of the 
resulting solutions does not exceed the approximation error for the symbol of the kernel of the 
IE. 

The author wishes to express his gratitude to V. M. Aleksandrov for his interest in this 
work. 
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